Hypotheses	Novelty	Keywords	Publications	Evaluator 1ª	Evaluator 2 ^b	Evaluator 3 ^c	Group
			(n=72), n (%)	score	score	score	consensus
							score
1. Developing human induced	iPSC-derived	"iPSC-derived	28 (39)	5	5	5	5
pluripotent stem cell -derived	cardiomyocyte models	cardiomyocytes,"					
cardiomyocyte models to better	for human-like responses ^f	"human cardiac					
mimic human cardiac responses to		responses,"					
cardiotoxic agents		"cardiotoxicity"					
2. Utilizing 3D bioprinted human	3D bioprinted heart	"3D bioprinted	0 (0)	5	5	5	5
heart tissues that replicate the	tissues replicating human	heart tissues,"					
structural and functional	heart characteristics	"structural and					
characteristics of human hearts for		functional					
cardiotoxicity testing		characteristics,"					
		"cardiotoxicity"					

Multimedia Appendix 5. Evaluation of hypotheses to overcome the challenge of the limitations of animal models in cardiotoxicity research.

3. Employing organ-on-a-chip	Heart-on-a-chip systems	"organ-on-a-chip,	1 (1)	4	4	4	4
technology, specifically	for accurate	"					
heart-on-a-chip systems, to create	human-relevant models	"heart-on-a-chip,					
more accurate and human-relevant		" "accurate					
models for cardiotoxicity studies		models,"					
		"cardiotoxicity"					
4. Applying CRISPR ^d -Cas9 gene	CRISPR-Cas9 for	"CRISPR-Cas9,"	0 (0)	4	4	3	4
editing to create patient-specific	patient-specific	"patient-specific					
iPSC-derived cardiomyocytes for	cardiomyocyte models	cardiomyocytes,"					
personalized cardiotoxicity testing		"personalized					
		testing,"					
		"cardiotoxicity"					
5. Using human cardiac organoids to	Human cardiac organoids	"human cardiac	0 (0)	4	4	4	4
study cardiotoxic responses in a	in a controlled, 3D	organoids," "3D					
controlled, three-dimensional	environment	environment,"					
environment that closely mimics		"cardiotoxic					
human heart tissue		responses"					

6. Integrating multi-organ-on-a-chip	Multi-organ-on-a-chip	"multi-organ-on-	0 (0)	4	3	4	3
systems to study the systemic effects	systems for systemic	a-chip,"					
of cardiotoxic agents and their	effects study	"systemic					
interactions with other organs		effects,"					
		"cardiotoxicity"					
7. Developing genetically modified	Genetically modified	"genetically	3 (4)	4	4	3	3
animal models that express human	animal models expressing	modified animal					
cardiac-specific genes to improve the	human cardiac genes	models," "human					
relevance of cardiotoxicity studies		cardiac genes,"					
		"relevance,"					
		"cardiotoxicity"					
8. Employing advanced	Computational modeling	"computational	35 (49)	4	2	3	2
computational modeling and	and simulations with	modeling,"					
simulations to predict cardiotoxicity	human cardiac data	"simulations,"					
based on human cardiac cell data		"human cardiac					
		data,"					
		"cardiotoxicity"					

9. Using human explant heart tissues	Human explant heart	"human explant	0 (0)	5	5	3	4
in ex vivo studies to directly observe	tissues for direct	heart tissues,"					
human-specific cardiotoxic responses	human-specific responses	"ex vivo studies,"					
		"human-specific					
		responses,"					
		"cardiotoxicity"					
10. Creating chimeric animal models	Chimeric animals with	"chimeric	0 (0)	4	4	3	4
with humanized hearts to better	humanized hearts for	animals,"					
replicate human cardiotoxicity in	better replication	"humanized					
vivo		hearts,"					
		"replication,"					
		"cardiotoxicity"					
11. Implementing single-cell	Single-cell	"single-cell	0 (0)	4	4	4	4
transcriptomics and proteomics on	transcriptomics and	transcriptomics,"					
human cardiac tissues to identify	proteomics for	"proteomics,"					
specific biomarkers and pathways	biomarkers and pathways	"biomarkers,"					
involved in cardiotoxicity, which can		"pathways,"					

be used to refine in vitro models		"cardiotoxicity"					
12. Utilizing human cardiac	Human cardiac	"human cardiac	0 (0)	4	4	4	4
microtissues engineered with diverse	microtissues with diverse	microtissues,"					
cell types to study the complex	cell types for complex	"diverse cell					
interactions and cardiotoxic effects in	interactions	types," "complex					
a more representative model		interactions,"					
		"cardiotoxicity"					
13. Developing patient-derived	PDX models with human	"patient-derived	0 (0)	4	4	4	4
xenografts models for cardiotoxicity	heart tissues ^g	xenografts,"					
testing, where human heart tissues		"PDX models,"					
are implanted in immunodeficient		"human heart					
mice to study human-specific drug		tissues," "drug					
responses		responses,"					

		"cardiotoxicity"					
14. Using humanized zebrafish	Humanized zebrafish	"humanized	0 (0)	4	4	3	4
models with human cardiac genes to	models with human	zebrafish					
study the cardiotoxic effects of drugs	cardiac genes for	models," "human					
in a high-throughput manner	high-throughput studies	cardiac genes,"					
		"high-throughput					
		," ,					
		"cardiotoxicity"					
15. Applying human cardiac spheroid	Human cardiac spheroid	"human cardiac	0 (0)	4	4	4	4
models to evaluate the cumulative	models for chronic	spheroids,"					
effects of chronic exposure to	exposure studies in 3D	"chronic					
cardiotoxic agents in a	context	exposure," "3D					
three-dimensional context		context,"					

		"cardiotoxicity"					
16. Implementing AI ^e -driven analysis	AI-driven analysis for	"AI-driven	0 (0)	4	4	4	4
of human cardiac cell responses to	refining in vitro models	analysis,"					
cardiotoxic agents to refine in vitro	with real-world data	"human cardiac					
models based on real-world data		cells," "in vitro					
		models,"					
		"real-world					
		data,"					
		"cardiotoxicity"					
17. Developing lab-on-a-chip devices	Lab-on-a-chip devices	"lab-on-a-chip,"	2 (3)	5	4	4	4
that incorporate human cardiac cells	simulating mechanical	"mechanical					
and simulate the mechanical forces	forces on human cardiac	forces," "human					
experienced by the heart to study	cells	cardiac cells,"					
drug-induced cardiotoxicity		"cardiotoxicity"					

18. Using human cardiac tissue slices	Human cardiac tissue	"human cardiac	1 (1)	5	5	4	5
in vitro to assess the	slices for	tissue slices,"					
electrophysiological and contractile	electrophysiological and	"electrophysiolog					
responses to cardiotoxic agents	contractile responses	ical responses,"					
		"contractile					
		responses,"					
		"cardiotoxicity"					
19. Integrating human-specific	Integrating	"human-specific	0 (0)	4	4	4	4
metabolic and genetic profiles into in	human-specific metabolic	metabolic					
vitro cardiotoxicity models to	and genetic profiles in in	profiles,"					
improve their predictive accuracy	vitro models	"genetic					
		profiles," "in					
		vitro models,"					
		"cardiotoxicity"					

20. Employing high-throughput	High-throughput	"high-throughput	2 (3)	4	4	4	4
screening platforms with human	screening with human	screening,"					
cardiac cells to identify and validate	cardiac cells for	"human cardiac					
new cardiotoxicity biomarkers and	biomarker discovery	cells,"					
therapeutic targets		"biomarkers,"					
		"therapeutic					
		targets,"					
		"cardiotoxicity"					

^aAuthor YL (MD and PhD, professor).

^bAuthor TG (MD, final-year PhD candidate).

^cAuthor CY (MD, first-year PhD student).

^dCRiSPR: clustered regularly interspaced short palindromic repeats.

^eAI: artificial intelligence.

^fiPSC: induced pluripotent stem cell

^gPDX: patient-derived xenograft