Hypotheses	Novelty	Keywords	Publications	Evaluator 1 ^a	Evaluator 2 ^b	Evaluator 3 ^c	Group
			(n=54), n (%)	score	score	score	consensus
							score
1. Utilizing multi-omics approaches	Integration of	"multi-omics,"	0 (0)	4	4	4	4
(genomics, proteomics, metabolomics)	multi-omics data for	"genomics,"					
to identify novel and reliable	comprehensive	"proteomics,"					
biomarkers for cardiotoxicity	biomarker	"metabolomics,"					
	discovery	"biomarkers,"					
		"cardiotoxicity"					
2. Developing CRISPR ^d -based	CRISPR-based gene	"CRISPR," "gene	0 (0)	5	4	3	4
screening methods to discover genes	and pathway	discovery,"					
and pathways involved in	discovery for new	"pathway					
cardiotoxicity, leading to the	cardiotoxicity	discovery,"					
identification of new biomarkers	biomarkers	"biomarkers,"					
		"cardiotoxicity"					

Multimedia Appendix 4. Evaluation of hypotheses to overcome the challenge of the lack of reliable biomarkers in cardiotoxicity research.

3. Applying single-cell RNA	Single-cell RNA	"single-cell RNA	1 (2)	4	3	4	3
sequencing to cardiac tissues to	sequencing to	sequencing,"					
uncover specific gene expression	identify specific	"gene					
profiles that serve as reliable	gene expression	expression,"					
biomarkers for cardiotoxicity	profiles	"biomarkers,"					
		"cardiotoxicity"					
4. Investigating the role of non-coding	Role of non-coding	"non-coding	1 (2)	4	3	4	3
RNAs (microRNAs, long non-coding	RNAs as novel	RNAs,"					
RNAs) in cardiotoxicity to identify	cardiotoxicity	"microRNAs,"					
them as potential biomarkers	biomarkers	"long non-coding					
		RNAs,"					
		"biomarkers,"					
		"cardiotoxicity"					
5. Conducting large-scale	Large-scale GWAS	"GWAS,"	1 (2)	4	4	4	4
genome-wide association studies to	to find genetic	"genetic					
find genetic variants associated with	variants linked to	variants,"					
increased risk of cardiotoxicity, which	cardiotoxicity risk ^f	"cardiotoxicity					

can be used as biomarkers.		risk,"					
		"biomarkers"					
6. Using high-throughput proteomic	High-throughput	"high-throughput	0 (0)	4	4	4	4
screening of blood samples from	proteomics for	proteomics,"					
patients treated with cardiotoxic drugs	identifying protein	"blood samples,"					
to identify protein biomarkers	biomarkers in blood	"protein					
indicative of cardiotoxicity		biomarkers,"					
		"cardiotoxicity"					
7. Developing metabolomic profiles of	Metabolomic	"metabolomics,"	50 (93)	3	2	4	2
patients undergoing treatment with	profiling to discover	"metabolic					
cardiotoxic agents to identify	metabolic	profiling,"					
metabolic biomarkers that predict	biomarkers	"biomarkers,"					
cardiotoxicity		"cardiotoxicity"					

8. Investigating extracellular vesicles	Identification of	"extracellular	0 (0)	4	4	3	4
(exosomes) released by	molecular cargo in	vesicles,"					
cardiomyocytes under stress to	exosomes as	"exosomes,"					
identify their molecular cargo as	biomarkers	"molecular					
biomarkers for cardiotoxicity		cargo,"					
		"biomarkers,"					
		"cardiotoxicity"					
9. Applying advanced glycomics to	Advanced	"advanced	0 (0)	4	4	4	4
study changes in glycosylation	glycomics for	glycomics,"					
patterns of cardiac proteins as	changes in	"glycosylation					
biomarkers of cardiotoxicity	glycosylation	patterns,"					
	patterns	"biomarkers,"					
		"cardiotoxicity"					
10. Utilizing artificial intelligence and	AI ^e and machine	"AI," "machine	0 (0)	4	4	3	4
machine learning to analyze large	learning to analyze	learning,"					
datasets from clinical trials to identify	large clinical	"clinical					
novel biomarkers for cardiotoxicity	datasets	datasets,"					

		"biomarkers,"					
		"cardiotoxicity"					
11. Exploring the gut-heart axis to	Microbiota-derived	"gut-heart axis,"	0 (0)	4	4	4	4
identify microbiota-derived	metabolites as	"microbiota-deriv					
metabolites that serve as biomarkers	biomarkers for	ed metabolites,"					
for cardiotoxicity	cardiotoxicity	"biomarkers,"					
		"cardiotoxicity"					
12. Using integrative bioinformatics	Integrative	"integrative	0 (0)	4	4	4	4
approaches to combine data from	bioinformatics for	bioinformatics,"					
different omics studies to pinpoint	combining	"multi-omics					
robust biomarkers for cardiotoxicity	multi-omics data	data,"					
		"biomarkers,"					
		"cardiotoxicity"					

13. Investigating the role of immune	Immune system	"immune system	1 (2)	4	4	3	4
system activation and inflammation in	activation and	activation,"					
cardiotoxicity to identify cytokines	inflammation	"inflammation					
and other immune markers as reliable	markers as	markers,"					
biomarkers	biomarkers	"biomarkers,"					
		"cardiotoxicity"					
14. Developing high-sensitivity assays	High-sensitivity	"high-sensitivity	0 (0)	4	4	4	4
to detect post-translational	assays for	assays,"					
modifications in cardiac proteins as	post-translational	"post-translationa					
early biomarkers of cardiotoxicity	modifications	l modifications,"					
		"biomarkers,"					
		"cardiotoxicity"					
15. Applying lipidomics to profile	Lipidomics for	"lipidomics,"	0 (0)	4	4	4	4
changes in lipid composition in blood	profiling changes in	"lipid					
samples as biomarkers for	lipid composition	composition,"					
cardiotoxicity		"biomarkers,"					
		"cardiotoxicity"					

16. Using longitudinal studies with	Longitudinal studies	"longitudinal	0 (0)	4	4	4	4
repeated sampling to track changes in	for tracking	studies,"					
potential biomarkers over time in	biomarker changes	"repeated					
patients treated with cardiotoxic drugs	over time	sampling,"					
		"biomarkers,"					
		"cardiotoxicity"					
17. Investigating the epigenetic	Epigenetic changes	"epigenetic	0 (0)	4	4	4	4
changes in cardiomyocytes exposed to	as biomarkers for	changes," "DNA					
cardiotoxic agents to identify DNA	cardiotoxicity	methylation,"					
methylation or histone modification		"histone					
patterns as biomarkers		modifications,					
		biomarkers,"					
		"cardiotoxicity"					
18. Developing high-throughput	High-throughput	"high-throughput	0 (0)	5	5	3	5
screening assays to identify oxidative	assays for oxidative	screening,"					
stress markers in cardiomyocytes as	stress markers	"oxidative stress					
biomarkers for cardiotoxicity		markers,"					

		"biomarkers,"					
		"cardiotoxicity"					
19. Exploring the role of cell-free	Cell-free DNA and	"cell-free DNA,"	0 (0)	4	4	4	4
DNA and RNA in the blood as	RNA as	"cell-free RNA,"					
non-invasive biomarkers for early	non-invasive	"non-invasive					
detection of cardiotoxicity	biomarkers	biomarkers,"					
		"cardiotoxicity"					
20. Utilizing 3D bioprinted cardiac	3D bioprinted	"3D bioprinted	0 (0)	5	5	4	5
tissue models to study molecular	models for studying	models,"					
changes under drug exposure and	molecular changes	"molecular					
identify reliable biomarkers for		changes,"					
cardiotoxicity		"biomarkers,"					
		"cardiotoxicity"					

^aAuthor YL (MD and PhD, professor).

^bAuthor TG (MD, final-year PhD candidate).

^cAuthor CY (MD, first-year PhD student).

^dCRiSPR: clustered regularly interspaced short palindromic repeats.

^eAI: artificial intelligence.

^fGWAS: genome-wide association study.