Hypotheses	Novelty	Keywords	Publications,	Evaluator 1 ^a	Evaluator 2 ^b	Evaluator 3°	Group
			n (%)	score	score	score	consensus
							score
1. Development of ultra-sensitive	Ultra-sensitive	"ultra-sensitive	0 (0)	4	4	4	4
biosensors using nanotechnology can	detection of early	biosensors,"					
detect early biomarkers of	cardiotoxicity	"nanotechnology,"					
cardiotoxicity at extremely low	biomarkers using	"early biomarkers,"					
concentrations	nanotechnology	"cardiotoxicity"					
2. Employing advanced imaging	Enhanced	"advanced	0 (0)	4	4	3	4
techniques such as hyperpolarized	sensitivity in	imaging,"					
MRI ^d can enhance the sensitivity of	detecting subtle	"hyperpolarized					
detecting subtle cardiac changes	cardiac changes	MRI," "cardiac					
indicative of cardiotoxicity	with hyperpolarized	changes,"					
	MRI	"cardiotoxicity"					

Multimedia Appendix 3. Evaluation of hypotheses to overcome the challenge of the lack of detection sensitivity in cardiotoxicity research.

3. Integrating liquid biopsy techniques	High sensitivity in	"liquid biopsy,"	0 (0)	3	3	3	3
with next-generation sequencing can	identifying	"next-generation					
identify circulating biomarkers of	circulating	sequencing,"					
cardiotoxicity with high sensitivity	cardiotoxicity	"circulating					
	biomarkers using	biomarkers,"					
	liquid biopsy and	"cardiotoxicity"					
	next-generation						
	sequencing						
4. Utilizing single-cell transcriptomics	Early detection of	"single-cell	0 (0)	4	4	4	4
in blood samples can detect early	cardiotoxic	transcriptomics,"					
cardiotoxic responses by identifying	responses with	"blood samples,"					
rare cell populations affected by	single-cell	"early cardiotoxic					
cardiotoxic agents	transcriptomics in	responses"					
	blood samples						

5. Developing machine learning	Detection of subtle	"machine	0 (0)	5	5	4	5
algorithms to analyze	cardiac electrical	learning," "ECG					
electrocardiogram data can detect	activity changes	data," "cardiac					
subtle and early changes in cardiac	with machine	electrical activity,"					
electrical activity associated with	learning on ECG	"cardiotoxicity"					
cardiotoxicity	data ^g						
6. Creating wearable devices with	Real-time	"wearable	0 (0)	5	5	4	5
enhanced sensitivity to monitor	monitoring of	devices,"					
real-time cardiac biomarkers in sweat	cardiac biomarkers	"real-time					
or interstitial fluid can provide early	in sweat or	monitoring,"					
warning signs of cardiotoxicity	interstitial fluid	"cardiac					
	using wearable	biomarkers,"					
	devices	"cardiotoxicity"					
7. Applying proteomics to identify	Identification of	"proteomics,"	0 (0)	4	4	4	4
low-abundance proteins in cardiac	low-abundance	"low-abundance					
tissue samples can improve the	proteins in cardiac	proteins," "cardiac					
detection of early molecular changes	tissues with	tissue samples,"					

due to cardiotoxicity	proteomics	"cardiotoxicity"					
8. Using CRISPR ^e -based detection	Increased	"CRISPR-based	0 (0)	4	3	3	3
systems to identify specific genetic	sensitivity in	detection,"					
markers of cardiotoxicity in	detecting genetic	"genetic markers,"					
patient-derived samples can increase	markers of	"patient-derived					
sensitivity	cardiotoxicity with	samples,"					
	CRISPR-based	"cardiotoxicity"					
	systems						
9. Developing fluorescent nanoprobes	Real-time	"fluorescent	0 (0)	4	4	4	4
that bind to specific cardiac	visualization and	nanoprobes,"					
biomarkers can allow for real-time	early detection with	"real-time					
visualization and early detection of	fluorescent	visualization,"					
cardiotoxicity	nanoprobes binding	"early detection,"					
	to cardiac	"cardiotoxicity"					

	biomarkers						
10. Incorporating artificial intelligence with high-resolution ultrasound imaging can enhance the detection of microstructural changes in cardiac tissue indicative of early cardiotoxicity	Enhanced detection of microstructural changes in cardiac tissue using AI ^f and high-resolution ultrasound imaging	"AI," "high-resolution ultrasound imaging," "microstructural changes," "cardiotoxicity"	0 (0)	5	5	4	5
11. Leveraging metabolomics to profile metabolic changes in blood and urine samples can improve the sensitivity of detecting early cardiotoxic effects	Improved sensitivity in detecting early cardiotoxic effects with metabolomics profiling	"metabolomics," "metabolic changes," "blood and urine samples," "early cardiotoxic effects"	0 (0)	4	4	4	4

12. Employing optical coherence	Detection of	"optical coherence	0 (0)	4	4	4	4
tomography with AI-based analysis	micro-level cardiac	tomography,"					
can detect micro-level cardiac tissue	tissue changes	"AI-based					
changes associated with cardiotoxicity	using OCT and	analysis,"					
	AI-based analysis ^h	"micro-level					
		cardiac tissue					
		changes,"					
		"cardiotoxicity"					
13. Developing quantum dot-based	Detection of minute	"quantum	0 (0)	4	4	4	4
sensors that can detect minute changes	cardiac enzyme	dot-based sensors,"					
in cardiac enzyme levels associated	changes with	"cardiac enzyme					
with early cardiotoxicity	quantum dot-based	levels," "early					
	sensors	cardiotoxicity"					
14. Utilizing advanced glycomics to	Sensitive markers	"advanced	0 (0)	4	4	4	4
study changes in glycosylation patterns	of cardiotoxicity	glycomics,"					
of cardiac proteins as sensitive markers	with advanced	"glycosylation					
of cardiotoxicity	glycomics analysis	patterns,"					

	of glycosylation	"sensitive					
	patterns	markers,"					
		"cardiotoxicity"					
15. Applying high-throughput	Identification of	"high-throughput	0 (0)	4	4	4	4
screening of microRNAs in blood	early cardiotoxic	screening,"					
samples to identify sensitive early	markers with	"microRNAs,"					
markers of cardiotoxicity	high-throughput	"blood samples,"					
	microRNA	"early markers,"					
	screening in blood	"cardiotoxicity"					
16. Integrating deep learning models	Enhanced	"deep learning,"	0 (0)	4	4	3	4
with cardiac MRI data to enhance the	sensitivity in	"cardiac MRI					
sensitivity of detecting early signs of	detecting early	data," "early					
cardiotoxicity-related fibrosis	signs of	signs,"					
	cardiotoxicity-relate	"cardiotoxicity-rela					
	d fibrosis with deep	ted fibrosis"					
	learning and cardiac						
	MRI data						

17. Using advanced	Detection of subtle	"advanced	0 (0)	4	4	3	4
electrophysiological techniques to	changes in cardiac	electrophysiologica					
detect subtle changes in cardiac cell	cell electrical	l techniques,"					
electrical properties as early indicators	properties with	"cardiac cell					
of cardiotoxicity	advanced	electrical					
	electrophysiological	properties," "early					
	techniques	indicators,"					
		"cardiotoxicity"					
18. Developing antibody-based	High sensitivity in	"antibody-based	0 (0)	4	4	3	3
biosensors for detecting	detecting	biosensors,"					
low-abundance cardiac biomarkers in	low-abundance	"low-abundance					
blood with high sensitivity	cardiac biomarkers	biomarkers,"					
	with	"blood," "high					
	antibody-based	sensitivity,"					
	biosensors	"cardiotoxicity"					

19. Employing photoacoustic imaging	Early detection of	"photoacoustic	0 (0)	5	5	4	5
combined with nanoparticle contrast	cardiac tissue	imaging,"					
agents to detect early cardiac tissue	changes with	"nanoparticle					
changes indicative of cardiotoxicity	photoacoustic	contrast agents,"					
	imaging and	"early cardiac					
	nanoparticle	tissue changes,"					
	contrast agents	"cardiotoxicity"					
20. Creating lab-on-a-chip devices that	Multiplexed	"lab-on-a-chip	0 (0)	4	4	4	4
can perform multiplexed detection of	detection of	devices,"					
cardiotoxicity biomarkers from a	cardiotoxicity	"multiplexed					
single drop of blood with high	biomarkers with	detection,"					
sensitivity	lab-on-a-chip	"cardiotoxicity					
	devices	biomarkers," "high					
		sensitivity"					

^aAuthor YL (MD and PhD, professor).

^bAuthor TG (MD, final-year PhD candidate).

^cAuthor CY (MD, first-year PhD student).

^dMRI: magnetic resonance imaging.

^eCRISPR: clustered regularly interspaced short palindromic repeats.

^fAI: artificial intelligence.

^gECG: electrocardiogram

^hOCT: optical coherence tomography