Hypotheses	Novelty	Keywords	Publications	Evaluator 1 ^a	Evaluator 2 ^b	Evaluator 3 ^c	Group
			(n=18), n	score	score	score	consensus
			(%)				score
1. Integrating patient-specific genetic profiles	High	"genetic profiles,"	0 (0)	4	4	4	4
with AI ^d algorithms can predict individual		"AI," "cardiotoxicity,"					
susceptibility to cardiotoxicity, enabling		"personalized					
personalized treatment plans		treatment"					
2. Using patient-derived cardiomyocytes	High	"patient-derived	0 (0)	3	3	4	3
from diverse genetic backgrounds in		cardiomyocytes,"					
high-throughput screening can identify		"genetic backgrounds,"					
genetic variants associated with increased		"high-throughput					
cardiotoxicity risk		screening,"					
		"cardiotoxicity risk"					

Multimedia Appendix 2. Evaluation of hypotheses to overcome the challenge of variability among patients in cardiotoxicity research.

3. Longitudinal studies using wearable health	Modera	"wearable health	0 (0)	4	4	4	4
monitors can capture real-time cardiac data,	te	monitors," "real-time					
helping to identify patient-specific patterns		cardiac data,"					
and early signs of cardiotoxicity		"cardiotoxicity					
		patterns"					
4. Epigenetic profiling of patients before and	High	"epigenetic profiling,"	0 (0)	4	4	4	4
after drug administration can reveal markers		"drug administration,"					
that predict susceptibility to cardiotoxic		"cardiotoxicity					
effects		markers"					
5. Applying machine learning to electronic	Modera	"machine learning,"	0 (0)	4	5	3	4
health records can uncover hidden	te	"electronic health					
correlations between patient demographics,		records, EHRs,"					
comorbidities, and cardiotoxicity risk		"patient demographics,"					
		"comorbidities,"					
		"cardiotoxicity risk"					
6. Developing a multi-omics approach that	High	"multi-omics,"	0 (0)	5	5	4	5
combines genomics, proteomics, and		"genomics,"					

metabolomics can provide a comprehensive		"proteomics,"					
understanding of individual variability in		"metabolomics,"					
cardiotoxic responses		"cardiotoxicity					
		variability"					
7. Using CRISPR ^e technology to create	High	"CRISPR,"	2 (11)	4	4	3	4
patient-specific iPSC ^f -derived		"iPSC-derived					
cardiomyocytes can help study the impact of		cardiomyocytes,"					
individual genetic differences on		"genetic differences,"					
cardiotoxicity		"cardiotoxicity"					
8. Investigating the role of microbiome	High	"microbiome diversity,"	1 (6)	4	4	4	4
diversity in cardiotoxicity can reveal how gut		"cardiotoxicity," "gut					
microbiota influence individual susceptibility		microbiota," "cardiac					
to cardiac damage from drugs		damage"					
9. Pharmacogenomics studies can identify	Modera	"pharmacogenomics,"	0 (0)	4	4	3	4
specific gene-drug interactions that contribute	te	"gene-drug					
to variability in cardiotoxic responses among		interactions,"					
patients		"cardiotoxicity					

		variability"					
10. Utilizing advanced imaging techniques,	Modera	"advanced imaging,"	0 (0)	4	4	3	4
such as cardiac MRI ^g , can non-invasively	te	"cardiac MRI,"					
assess patient-specific cardiac changes and		"patient-specific					
predict cardiotoxicity risk		cardiac changes,"					
		"cardiotoxicity risk"					
11. Exploring the impact of hormonal	Modera	"hormonal differences,"	0 (0)	4	4	3	4
differences, such as variations in sex	te	"sex hormones,"					
hormones, on cardiotoxicity can help		"cardiotoxicity,"					
understand gender-specific risks		"gender-specific risks"					
12. Conducting large-scale genome-wide	Modera	"genome-wide	15 (83)	5	3	3	3
association studies can identify common	te	association studies,					
genetic variants that increase the risk of		GWAS," "genetic					
cardiotoxicity		variants,"					
		"cardiotoxicity risk"					

13. Studying the interaction between	Modera	"environmental	0 (0)	4	4	4	4
environmental factors, such as diet and	te	factors," "diet,"					
lifestyle, and genetic predisposition can		"lifestyle," "genetic					
provide insights into patient-specific		predisposition,"					
cardiotoxicity risk		"cardiotoxicity"					
14. Investigating the role of immune system	Modera	"immune system	0 (0)	5	5	3	4
variability in cardiotoxicity can reveal how	te	variability,"					
individual differences in immune response		"cardiotoxicity,"					
contribute to cardiac damage		"immune response,"					
		"cardiac damage"					
15. Applying personalized medicine	Modera	"personalized	0 (0)	5	5	4	5
approaches to adjust drug dosages based on	te	medicine," "drug					
individual metabolic profiles can reduce the		dosages," "metabolic					
risk of cardiotoxicity		profiles,"					
		"cardiotoxicity"					

16. Developing predictive biomarkers from	High	"predictive	0 (0)	5	5	3	5
blood-based assays can provide non-invasive		biomarkers,"					
tools for assessing individual cardiotoxicity		"blood-based assays,"					
risk before drug administration		"cardiotoxicity risk,"					
		"non-invasive tools"					
17. Analyzing patient-specific variations in	Modera	"drug metabolism	0 (0)	4	4	4	4
drug metabolism enzymes can help predict	te	enzymes,"					
and mitigate cardiotoxicity risk		"patient-specific					
		variations,"					
		"cardiotoxicity risk"					
18. Using virtual clinical trials with simulated	High	"virtual clinical trials,"	0 (0)	4	4	3	4
patient populations can model and predict		"simulated patient					
variability in cardiotoxic responses across		populations,"					
diverse demographics		"cardiotoxicity					
		variability"					

19. Investigating the impact of	High	"epitranscriptomic	0 (0)	4	4	4	4
epitranscriptomic modifications, such as		modifications," "RNA					
RNA methylation, on cardiotoxicity can		methylation,"					
uncover new layers of individual variability		"cardiotoxicity," "drug					
in drug response		response"					
20. Implementing AI-driven predictive	High	"AI-driven predictive	0 (0)	4	4	4	4
analytics on patient genomic data can		analytics," "genomic					
enhance the identification of at-risk		data," "cardiotoxicity,"					
individuals and tailor cardioprotective		"cardioprotective					
strategies accordingly		strategies"					

^aAuthor YL (MD and PhD, professor).

^bAuthor TG (MD, final-year PhD candidate).

^cAuthor CY (MD, first-year PhD student).

^dAI: artificial intelligence.

^eCRiSPR: clustered regularly interspaced short palindromic repeats.

^fiPSC: induced pluripotent stem cell.

^gMRI: magnetic resonance imaging.